Voltar às publicações recentes

Preditores iniciais do bom desempenho e de dificuldades de aprendizagem em matemática

Nancy C. Jordan, PhD

University of Delaware, EUA

Junho 2010 (Inglês). Tradução: fevereiro 2013

Introdução

Dificuldades na aprendizagem de Matemática são bastante comuns. Chega a 10% a taxa de alunos com diagnóstico de algum tipo de dificuldade de aprendizagem nessa área ao longo de sua vida escolar.1,2 São ainda mais numerosos os estudantes que enfrentam problemas em Matemática sem um diagnóstico formal. Essas dificuldades são persistentes, e alunos com esse perfil podem não alcançar jamais o nível de desempenho normal de seus pares.

Do que se trata

Os fundamentos para um bom desempenho em Matemática são estabelecidos antes do ingresso no ensino fundamental.3,4 A identificação dos principais preditores de resultados em Matemática fornece apoio para análise, intervenção e acompanhamento do progresso da criança antes que ela apresente um atraso acadêmico importante. 

Problema

As consequências de um desempenho insatisfatório em Matemática são graves tanto para o cotidiano, como para o desempenho educacional e os progressos em termos de carreira.5 A competência matemática é necessária para o ingresso nas disciplinas CTEM (Ciências, Tecnologia, Engenharia e Matemática) no nível universitário e para as profissões relacionadas a essas áreas.6 Há grandes diferenças entre grupos associadas à situação socioeconômica que se manifestam nos resultados em Matemática,7 e também diferenças individuais nas capacidades fundamentais de aprendizagem.8 Tais diferenças já estão presentes na primeira infância e aumentam ao longo da vida escolar. 

Contexto da Pesquisa

Os estudos longitudinais das características da criança com dificuldades em Matemática permitiram identificar objetivos importantes para intervenções. Ao ingressar na escola, a maioria das crianças tem um sentido de número que é relevante para a aprendizagem da Matemática. Os componentes pré-verbais do número – por exemplo, as representações exatas de pequenas quantidades e as representações aproximadas de quantidades maiores – desenvolvem-se na fase inicial da infância.9,10,11 Mas essa base inicial, embora considerada como apoio para a aprendizagem de habilidades matemáticas convencionais, não é suficiente. A maioria das crianças com dificuldades em Matemática caracteriza-se por apresentar pontos fracos no que se refere à abstração e representação dos números inteiros, relações numéricas e operações com números12 – aspectos maleáveis e influenciados pela experiência.13

Questões-chave de pesquisa

Na área da alfabetização, medidas de identificação precoce confiáveis e válidas conduziram a intervenções e iniciativas eficazes de apoio na primeira infância e após essa fase.14 Medidas intermediárias estreitamente ligadas à leitura – por exemplo, conhecimento do som das letras – fornecem melhores indicações de bom desempenho em leitura do que competências mais gerais. Do mesmo modo, na área de operações com números, as competências iniciais associadas à Matemática com as quais a criança deve lidar na escola fornecem melhores indicações de bom desempenho e dificuldade nessa área.15 Para uma análise inicial, é necessário identificar os principais preditores longitudinais de desempenho em Matemática.    

Resultados de pesquisas recentes

Ter como referência as competências numéricas iniciais é importante para estabelecer as trajetórias de realização educacional da criança em relação à Matemática.16,17 Dificuldades e deficiências em matemática têm suas raízes na compreensão insatisfatória de número.18,19 Crianças com discalculia – uma forma grave de deficiência nessa área – caracterizam-se por deficits no reconhecimento e na comparação de números, bem como na contagem e na enumeração de conjuntos de objetos.18

Preditores longitudinais

Estudos longitudinais de curta duração – do início até o final da Educação Infantil – revelam que indicadores de habilidades em operações com números associados a contas, discriminação de quantidades e nomenclatura numérica são preditores de moderados a fortes da realização acadêmica em Matemática.20,21,22 Além disso, o desempenho nos indicadores de habilidades em operações com números em programas de educação infantil prediz o desempenho em medidas similares na idade pré-escolar.23 Crianças de baixa renda ingressam na Educação Infantil bem defasadas em relação a seus pares de renda média, no que diz respeito aos indicadores de habilidades em operações com números, e essa lacuna não diminui ao longo do ano letivo.12

Estudos longitudinais abrangendo múltiplos momentos no tempo, do início da Educação Infantil até o final do terceiro ano do ensino fundamental, sugerem que a consciência da noção de número apoia a aprendizagem da Matemática complexa associada à computação e também à Matemática aplicada à resolução de problemas.15,17,24,25 Operações com números aprendidas na Educação Infantil e que estão relacionadas a contas, comparações numéricas de grandezas, cálculo mental e aritmética predizem o nível de conhecimento matemático e a capacidade de realização do primeiro ao terceiro ano do ensino fundamental. A competência numérica inicial atua como mediadora do baixo nível de desempenho matemático dos alunos de baixa renda, em situação de alto risco. A competência com números prediz igualmente os resultados posteriores em Matemática, independentemente das variáveis de QI.26 A competência pré-escolar em cálculos aritméticos simples, que envolvem adição e subtração, permite predizer com maior exatidão o desempenho matemático posterior. Uma vez que a maioria das crianças consegue adquirir competências numéricas iniciais,4 os efeitos intermediários de tal aquisição fornecem o direcionamento para intervenções precoces. 

Trajetórias fundamentais

Três trajetórias cognitivas subjacentes – quantitativa, linguística e espacial – contribuem de maneira independente para a aquisição de competências numéricas em programas de Educação Infantil.27 As habilidades linguísticas constituem preditores específicos de nomenclatura numérica, ao passo que as habilidades quantitativas constituem preditores específicos de cálculo mental; a atenção espacial é um preditor distinto de ambos os tipos de habilidades iniciais em operações com números. Essas trajetórias precursoras estão distintamente relacionadas aos resultados alcançados em Matemática dois anos mais tarde – por exemplo, a trajetória linguística é precursora específica de conceitos de geometria e mensuração, o que não é o caso da trajetória quantitativa. Um modelo de trajetória pode explicar os motivos pelos quais alunos com um desempenho relativamente bom em determinada área da matemática não apresentam um desempenho satisfatório em outra.28

Lacunas de pesquisa

É preciso desenvolver e validar ferramentas para a análise de competências numéricas básicas em programas de educação infantil, para que possam ser utilizadas em escolas, clínicas e outros ambientes educacionais. Intervenções para crianças que apresentam dificuldades de aprendizagem em Matemática, ou que estão em risco de apresentar tais dificuldades, devem ser concebidas e avaliadas por meio de estudos randomizados. Especificamente, pesquisadores devem analisar de que modo os ganhos em áreas específicas da competência com números podem ser obtidos com maior nível de eficácia, e também se tais ganhos podem ser sustentados ao longo do tempo e generalizados à aprendizagem da Matemática como um todo. Além disso, é importante também diferenciar os métodos mais e menos eficazes para aprimorar a competência com números. 

Conclusões

Dificuldades em Matemática são generalizadas e podem ter consequências para toda a vida. As competências numéricas básicas desenvolvem-se antes do primeiro ano do ensino fundamental e são preditores importantes de aquisições ou dificuldades acadêmicas em Matemática. Níveis mais altos de competência com números na Educação Infantil predizem desempenho significativo e substancial, em termos estatísticos, em avaliações matemáticas e em computação ao final do terceiro ano do ensino fundamental. A capacidade de associar representação numérica a relações e operações com números inteiros é particularmente importante. A competência com números depende da capacidade linguística – por exemplo, conhecer os nomes dos números – e também do conhecimento quantitativo e espacial – combinar e separar conjuntos. Embora os resultados de longo prazo para crianças de famílias de baixa renda sejam inferiores aos de crianças de renda média, a realização acadêmica em Matemática é moderada no que se refere às competências numéricas iniciais. Crianças de baixa renda ingressam na escola com relativamente poucas experiências associadas a números,29 o que contribui para colocá-las em desvantagem. Esse efeito intermediário da competência com números sobre o desempenho em Matemática sugere a necessidade de enfatizá-la em programas de Educação Infantil. De modo geral, a compreensão inicial do número é crucial para definir a trajetória matemática ao longo do ciclo inicial do ensino fundamental.

Implicações para pais, serviços e políticas

Nas escolas atuais, raramente dificuldades e deficiências de aprendizagem da Matemática são identificadas antes do quarto ano do ensino fundamental. As intervenções precoces são muito menos frequentes do que no caso da leitura.  Professores da Educação Infantil devem examinar os alunos para identificar dificuldades de operações com números, da mesma forma que os examinam com vistas à identificação precoce de dificuldades ligadas à alfabetização.  Programas de Educação Infantil devem propiciar experiências e instrução em Matemática relacionadas a números, relações numéricas e operações com números.4 Esse núcleo numérico deve enfatizar a lista de palavras relacionadas aos números, princípios de contas ligados a cardinalidade e correspondência biunívoca, comparação de tamanhos de conjuntos e união e separação de conjuntos.  Listas de números e jogos de tabuleiro simples que também utilizam listas de números podem ajudar a criança a desenvolver a noção de quantidade.30 Os responsáveis pelo desenvolvimento dos currículos para a primeira infância devem focalizar seus materiais nesses fundamentos numéricos. Crianças em escolas de comunidades de baixa renda encontram-se em situação de risco de apresentar dificuldades de aprendizagem em Matemática. Crianças de famílias de baixa renda ingressam na Educação Infantil mais defasadas que seus pares de renda média. Intervenções precoces podem ajudar todas as crianças a construir as bases de que necessitam para um bom desempenho em Matemática. 

Referências

  1. Barbaresi MJ, Katusic SK, Colligan RC, Weaver AL, Jacobsen SJ. Math learning disorder: Incidence in a population-based birth cohort, 1976-1982, Rochester, Minn. Ambulatory Pediatrics 2005;5(5):281-289.
  2. Shalev RS, Manor O, Gross-Tsur V. Developmental dyscalculia: A prospective six-year follow-up. Developmental Medicine and Child Neurology2005;47:121-125.
  3. Clements DH, Sarama J. Early childhood mathematics learning. In: Lester JFK, ed. Second handbook of research on mathematics teaching and learning. New York, NY: Information Age Publishing; 2007:461-555.
  4. Cross CT, Woods TA, Schweingruber H, National Research Council, Committee on Early Childhood Mathematics, eds. Mathematics learning in early childhood: Paths toward excellence and equity. Washington, DC: National Academies Press; 2009.
  5. Sadler PM, Tai RH. The two high-school pillars supporting college science. Science 2007;317:457-458.
  6. National Mathematics Advisory Panel (NMAP). Foundations for success: The final report of the National Mathematics Advisory Panel. Washington, DC: U.S. Department of Education; 2008
  7. Lubienski ST. A clash of social class cultures? Students’ experiences in a discussion-intensive seventh-grade mathematics classroom.The Elementary School Journal 2000;100(4):377-403.
  8. Geary DC, Hoard MK, Byrd-Craven J, Nugent L, Numtee C. Cognitive mechanisms underlying achievement deficits in children with mathematical learning disability. Child Development 2007;78(4):1343-1359.
  9. Berch DB. Making sense of number sense: Implications for children with mathematical disabilities.Journal of Learning Disabilities2005;38(4):333-339.
  10. Dehaene S. The number sense: How the mind creates mathematics. New York, NY: Oxford University Press; 1997.
  11. Feigenson L, Dehaene S, Spelke E. Core systems of number. TRENDS in Cognitive Sciences 2004;8(7):307-314.
  12. Jordan NC, Levine SC. Socioeconomic variation, number competence, and mathematics learning difficulties in young children. Developmental Disabilities Research Reviews 2009;15:60-68.
  13. Case R, Griffin S. Child cognitive development: The role of central conceptual structures in the development of scientific and social thought. In: Hauert EA, ed. Developmental psychology: Cognitive, perceptuo-motor, and neurological perspectives. North-Holland: Elsevier; 1990: 1993-230.
  14. Schatschneider C, Carlson CD, Francis DJ, Foorman BR, Fletcher JM. Relationship of rapid automatized naming and phonological awareness in early reading development: Implications for the double-digit hypothesis. Journal of Learning Disabilities 2002;35(3):245-256.
  15. Jordan NC, Glutting J, Ramineni C. The importance of number sense to mathematics achievement in first and third grades. Learning and Individual Differences 2010;20:82-88.
  16. Duncan GJ, Dowsett CJ, Classens A, Magnuson K, Huston AC, Klebanov P, Pagani LS, Feinstein L, Engel M, Brooks-Gunn J, Sexton H, Duckworth K,  Japel C. School readiness and later achievement. Developmental Psychology2007;43(6):1428-1446.
  17. Jordan NC, Kaplan D, Ramineni C, Locuniak MN. Early Math Matters: Kindergarten Number Competence and Later Mathematics Outcomes. Developmental Psychology 2009;3(45):850-867.
  18. Landerl K, Bevan A, Butterworth B. Developmental dyscalculia and basic numerical capacities: A study of 8 ̶ 9-year-old students. Cognition 2004;93:99-125.
  19. Mazzocco MM, Thompson RE. Kindergarten predictors of math learning disability. Learning Disabilities Research and Practice 2005;20(3):142-155.
  20. Clarke B, Shinn MR. A preliminary investigation into the identification and development of early mathematics curriculum-based measurement. School Psychology Review 2004;33(2):234-248.
  21. Lembke E, Foegen A. Identifying early numeracy indicators in for kindergarten and first-grade students. Learning Disabilities Research and Practice 2009;24:2-20.
  22. Methe SA, Hintze JM, Floyd RG. Validation and decision accuracy of early numeracy skill indicators. School Psychology Review 2008;37:359-373. 
  23. VanDerHeyden AM, Broussard C, Cooley A. Further development of measures of early math performance for preschoolers. Journal of School Psychology 2006:44:533-553.
  24. Jordan NC, Kaplan D, Locuniak MN, Ramineni C. Predicting first-grade math achievement from developmental number sense trajectories. Learning Disabilities Research & Practice 2007;22(1):36-46.
  25. Jordan NC, Kaplan D, Olah L, Locuniak MN. Number sense growth in kindergarten: A longitudinal investigation of children at risk for mathematics difficulties. Child Development 2006;77:153-175.
  26. Locuniak MN, Jordan NC. Using kindergarten number sense to predict calculation fluency in second grade. Journal of Learning Disabilities 2008;41(5):451-459.
  27. LeFevre J, Fast L, Skwarchuk SL, Smith-Chant BL, Bisanz J, Kamawar D, Penner-Wilger M.  Pathways to mathematics: Longitudinal predictors of performance. Child Development. In press.
  28. Mazzocco MM.  Defining and differentiating Mathematical Learning Difficulties and Disabilities. In: Berch DB, Mazzocco MMM. eds. Why is Math So Hard for Some Children? The Nature and Origins of Mathematical Learning Difficulties and Disabilities. Baltimore, MD: Paul H. Brookes; 2007: 29-48
  29. Clements DH, Sarama J. Experimental evaluation of the effects of a research-based preschool mathematics curriculum. American Education Research Journal 2008; 45(2), 443-494.
  30. Ramani GB, Siegler RS. Promoting broad and stable improvements in low-income children’s numerical knowledge through playing number board games. Child Development2008;79:375-394.

Para citar este artigo:

Jordan NC. Preditores iniciais do bom desempenho e de dificuldades de aprendizagem em matemática. Em: Tremblay RE, Boivin M, Peters RDeV, eds. Bisanz J, ed. tema. Enciclopédia sobre o Desenvolvimento na Primeira Infância [on-line]. http://www.enciclopedia-crianca.com/operacoes-com-numeros/segundo-especialistas/preditores-iniciais-do-bom-desempenho-e-de-dificuldades. Publicado: Junho 2010 (Inglês). Consultado: 17/08/2019.